

Welcome to Python DynamoDB Lock’s documentation!

Contents:

	Python DynamoDB Lock
	Features

	Consistency Notes

	Credits

	Installation
	Stable release

	From sources

	Usage
	Basic Usage

	Context Management

	Table Creation

	Error-Handling

	Throughput Provisioning

	Differences from Java implementation

	python_dynamodb_lock package
	python_dynamodb_lock module

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Deploying

	Credits
	Development Lead

	Contributors/Maintainers

	History
	0.9.3 (2020-07-14)

	0.9.2 (2020-07-13)

	0.9.1 (2019-10-29)

	0.9.0 (2018-10-28)

Indices and tables

	Index

	Module Index

	Search Page

Python DynamoDB Lock

[image: _images/ecf544feb87196731f4cb7d10155187873c37974.svg]
 [https://pypi.python.org/pypi/python_dynamodb_lock_whatnick][image: _images/python_dynamodb_lock.svg]
 [https://travis-ci.org/whatnick/python_dynamodb_lock][image: Documentation Status]
 [https://python-dynamodb-lock-whatnick.readthedocs.io/en/latest/?badge=latest]This is a fork of the currently unmaintained (2 years) of Python DynamoDB Lock [https://github.com/mohankishore/python_dynamodb_lock]
project. In the spirit of open-source whatnick [https://twitter.com/whatnick] is maintaining this while there is some time.
Any enhancements targeting this project can be sent here.

This is a general purpose distributed locking library built on top of DynamoDB. It is heavily
“inspired” by the java-based AmazonDynamoDBLockClient [https://github.com/awslabs/dynamodb-lock-client]
library, and supports both coarse-grained and fine-grained locking.

	Free software: Apache Software License 2.0

	Documentation: https://python-dynamodb-lock-whatnick.readthedocs.io

	Source Code: https://github.com/whatnick/python_dynamodb_lock

Features

	Acquire named locks - with configurable retry semantics

	Periodic heartbeat/update for the locks to keep them alive

	Auto-release the locks if there is no heartbeat for a configurable lease-duration

	Notify an app-callback function if the lock is stolen, or gets too close to lease expiry

	Store arbitrary application data along with the locks

	Uses monotonically increasing clock to avoid issues due to clock skew and/or DST etc.

	Auto-delete the database entries after a configurable expiry-period

Consistency Notes

Note that while the lock itself can offer fairly strong consistency guarantees, it does NOT
participate in any kind of distributed transaction.

For example, you may wish to acquire a lock for some customer-id “xyz”, and then make some changes
to the corresponding database entry for this customer-id, and then release the lock - thereby
guaranteeing that only one process changes any given customer-id at a time.

While the happy path looks okay, consider a case where the application changes take a long time,
and some errors/gc-pauses prevent the heartbeat from updating the lock. Then, some other client
can assume the lock to be abandoned, and start processing the same customer in parallel. The original
lock-client will recognize that its lock has been “stolen” and will let the app know through a callback
event, but the app may have already committed its changes to the database. This can only be solved by
having the application changes and the lock-release be part of a single distributed transaction - which,
as indicated earlier, is NOT supported.

That said, in most cases, where the heartbeat is not expected to get delayed beyond the lock’s lease
duration, the implementation should work just fine.

Refer to an excellent post by Martin Kleppmann on this subject:
https://martin.kleppmann.com/2016/02/08/how-to-do-distributed-locking.html

Credits

	AmazonDynamoDBLockClient: https://github.com/awslabs/dynamodb-lock-client

	Cookiecutter: https://github.com/audreyr/cookiecutter

	Cookiecutter Python: https://github.com/audreyr/cookiecutter-pypackage

Installation

Stable release

To install Python DynamoDB Lock, run this command in your terminal:

$ pip install python_dynamodb_lock

This is the preferred method to install Python DynamoDB Lock, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for Python DynamoDB Lock can be downloaded from the Github repo [https://github.com/whatnick/python_dynamodb_lock].

You can either clone the public repository:

$ git clone git://github.com/whatnick/python_dynamodb_lock

Or download the tarball [https://github.com/whatnick/python_dynamodb_lock/tarball/master]:

$ curl -OL https://github.com/whatnick/python_dynamodb_lock/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

Usage

To use Python DynamoDB Lock in a project:

from python_dynamodb_lock.python_dynamodb_lock import *

Basic Usage

You would typically create (and shutdown) the DynamoDBLockClient at the application startup
and shutdown:

get a reference to the DynamoDB resource
dynamodb_resource = boto3.resource('dynamodb')

create the lock-client
lock_client = DynamoDBLockClient(dynamodb_resource)

...

close the lock_client
lock_client.close()

Then, you would wrap the lock acquisition and release around the code-block that needs to be
protected by a mutex:

acquire the lock
lock = lock_client.acquire_lock('my_key')

... app logic that requires the lock ...

release the lock after you are done
lock.release()

Both the lock_client constructor and the acquire_lock method support numerous arguments to help
control/customize the behavior. Please look at the API documentation
for more details.

Context Management

The DynamoDBLock class implements the context-management interface and you can auto-release the
lock by doing something like this:

with lock_client.acquire_lock('my_key'):
 # ... app logic that requires the lock ...

Table Creation

The DynamoDBLockClient provides a helper class-method to create the table in DynamoDB:

get a reference to the DynamoDB client
ddb_client = boto3.client('dynamodb')

create the table
DynamoDBLockClient.create_dynamodb_table(ddb_client)

The above code snippet will create a table with the default name, partition/sort-key column-names,
read/write througput, but the method supports optional parameters to configure all of these.

That said, you can always create the table offline (e.g. using the AWS console) and use whatever
table and column names you wish. Please do remember to setup the TTL attribute to enable auto-deleting
of old/abandoned locks.

Error-Handling

There are a lot of things that can go wrong when dealing with distributed systems - the library
tries to strike the right balance between hiding these errors, and allowing the library to handle
specific kinds of errors as needed. Let’s go through the different use-cases one at a time.

Lock Acquisition

This is a synchronous use-case where the caller is waiting till it receives a lock. In this case,
most of the errors are wrapped inside a DynamoDBError and raised up to the caller. The key error
scenarios are the following:

	
	Some other client holds the lock

	
	This is not treated as real error scenario. This client would just wait for a configurable
retry_period, and then try to acquire the lock again.

	
	Race-condition amongst multiple lock-clients waiting to acquire lock

	
	Whenever the “old” lock is released (or expires), there may be multiple “new” clients trying
to grab the lock - in which case, one of those would succeed, and the rest of them would get
a DynamoDB’s ConditionalUpdateException. This is also not treated as a real error scenario, and
the client would just wait for the retry_period and then try again.

	
	This client goes over the configurable retry_timeout period

	
	After repeated retry attempts, this client might eventually go over the retry_timeout period
(as provided by the caller) - then, a DynamoDBLockError with code == ACQUIRE_TIMEOUT will be thrown.

	
	Any other error/exception

	
	Any other error would be wrapped inside a DynamoDBLockError with code == UNKNOWN_ERROR and raised
to the caller.

Lock Release

While this is also a synchronous use-case, in most cases, by the time this method is called, the caller
would have already committed his application-data changes, and would not have real rollback options.
Therefore, this method defaults to the best_effort mode, where it will try to release the lock properly,
but will log and swallow any exceptions encountered in the process. But, for the callers that are interested
in being notified of the errors, they can pass in best_effort=False and have all the errors wrapped inside
a DynamoDBLockError and raised up to them. The specific error scenarios could be one of the below:

	
	This client does not own the lock

	
	This can happen if the caller tries to use this client to release a lock owned by some other client.
The client will raise a DynamoDBLockError with code == LOCK_NOT_OWNED.

	
	The lock was stolen by some other client

	
	This should typically not happen unless someone messes with the back-end DynamoDB table directly. The
client will raise a DynamoDBLockError with code == LOCK_STOLEN.

	
	Any other error/exception

	
	Any other error would be wrapped inside a DynamoDBLockError with code == UNKNOWN_ERROR and raised
to the caller.

Lock Heartbeat

This is an asynchronous use-case, where the caller is not directly available to handle any errors. To handle
any error scenarios encountered while sending a heartbeat for a given lock, the client allows the caller to
pass in an app_callback function at the time of acquiring the lock.

	
	The lock was stolen by some other client

	
	This should typically not happen unless someone messes with the back-end DynamoDB table directly. The
client will call the app_callback with code == LOCK_STOLEN. The callback is expected to terminate the
related application processing and rollback any changes made under this lock’s protection.

	
	The lock has entered the danger zone

	
	If the send_heartbeat call for a given lock fails multiple times, the lock could go over the configurable
safe_period. The client will call the app_callback with code == LOCK_IN_DANGER. The callback is expected
to complete/terminate the related application processing, and call the lock.release() as soon as possible.

Note: it is worth noting that the client spins up two separate threads - one to send out the heartbeats, and
another one to check the lock-statuses. For whatever reason, if the send_heartbeat calls start hanging or
taking too long, the other thread will allow the client to notify the app about the locks getting into the
danger-zone. The actual app_callbacks are executed on a dedicated ThreadPoolExecutor.

Client Close

By default, the lock_client.close() will NOT release all the locks - as releasing the locks prematurely while the
application is still making changes assuming that it has the lock can be dangerous. As soon as a lock is released
by this client, some other client may pick it up, and the associated app may start processing the underlying
business entity in parallel.

It is highly recommended that the application manage its shutdown-lifecycle such that all the worker threads
operating under these locks are first terminated (committed or rolled-back), the corresponding locks released
(one at a time - by each worker thread), and then the lock_client.close() method is called. Alternatively, consider
letting the process die without releasing all the locks - they will be auto-released when their lease runs out
after a while.

That said, if the caller does wish to release all locks when closing the lock_client, it can pass in release_locks=True
argument when invoking the close() method. Please note that all the locks are released in the best_effort mode -
i.e. all the errors will be logged and swallowed.

Process Termination

A sudden process termination would leave the locks frozen with the values as of their last heartbeat. These locks
will go through one of the following scenarios:

	
	Eventual expiry - as per the TTL attribute

	
	Each lock has a TTL attribute (named ‘expiry_time’ by default) - which stores the timestamp (as epoch) after
which it is eligible for auto-deletion by DynamoDB. This deletion does not have a fixed SLA - but will likley
happen over the next 24 hours after the lock expires.

	
	Some other client tries to acquire the lock

	
	The client will treat the lock as an active lock - and will wait for a period equal to its lease_duration from
the point it first sees the lock. This does need the acquire_lock call to be made with a retry_period larger
than the lease_duration of the lock - otherwise, the acquire_lock call will timeout before the lease expires.

Throughput Provisioning

Whenever using DynamoDB, you have to think about how much read and write throughput you need to provision for your
table. The DynamoDBLockClient makes the following calls to DynamoDB:

	
	acquire_lock

	
	get_item: at least once per lock, and more often if there is lock contention and the lock_client needs to
retry multiple times before acquiring the lock.

	put_item: typically once per lock - whenever the lock becomes available.

	update_item: should be fairly rare - only needed when this client needs to take over an abandoned lock.

	So, the write throughput should be directly proportional to the applications need to acquire locks, but the
read throughput is a little harder to predict - it can be more sensitive to the lock contention at runtime.

	
	release_lock

	
	delete_item: once per lock

	So, assuming that every lock that is acquired will be released, this is also directly proportional to the
application’s lock acquition TPS.

	
	send_heartbeat

	
	update_item: the lock client supports a deterministic model where the caller can pass in a TPS value, and
the client will honor the same when making the heartbeat calls. Alternatively, the client also supports an
“adaptive” mode (the default), where it will take all the active locks at the beginning of each heartbeat_period
and spread their individual heartbeat calls evenly across the whole period.

Differences from Java implementation

As indicated before, this library derives most of its design from the
dynamo-db-lock [https://github.com/awslabs/dynamodb-lock-client] (Java) module. This section goes over few details
where this library goes a slightly different way:

	
	Added suport for DynadmoDB TTL attribute

	
	Since Feb 2017, DynamoDB supports having the tables designate one of the attributes as a TTL attribute -
containing an epoch timestamp value. Once the current time goes past that value, that row becomes eligible
for automated deletion by DynamoDB. These deletes do not incur any additional costs and help keep the table
clean of old/stale entries.

	
	Dropped support for lock retention after release

	
	The java library supports an additional lock-attribute called “deleteOnRelease” - which allows the caller to
control whether the lock, on its release, should be deleted or just marked as released. This python module
drops that flexibility, and always deletes the lock on release. The idea is to not try and treat the lock
table as a general purpose data-store, and treat it as a persistent representation of the “currently active
locks”.

	
	Dropped support for BLOB data field

	
	The java library supports a byte[] field called ‘data’ in addition to supporting arbitrary named fields to
be stored along with any lock. This python module drops that additional data field - with the understanding
that any additional data that the app wishes to store, can be passed in as part of the additional_attributes
map/dict that is already supported.

	
	Separate lock classes to represent local vs remote locks

	
	The java library uses the same LockItem class to represent both the locks created/acquired by this client as
well as the locks loaded from the database (currently held by other clients). This results in confusing
overloading of fields e.g. the “lookupTime” is overloaded to store the “lastUpdatedTime” for the locks owned
by this client, and the “lastLookupTime” for the locks owned by other clients.

	
	Added support for explicit and adaptive heartbeat TPS

	
	The java library would fire off the heartbeat updates for all the active locks one-after-another - as fast as
it can, and then wait till the end ot the heartbeat_period, and then do the same thing over. This can result
in significant write TPS is the application has a lot (say ~100) active locks. This python module allows the
caller to specific an explicit TPS value, or use an adaptive mode - where the heartbeats are evenly spread
over the whole heatbeat_period.

	
	Different callback model

	
	The java library creates a different thread for each lock that wishes to support “session-monitors”. This
python module uses a single thread (separate from the one used to send heartbeats) to periodically check that
the locks are being “heartbeat”-ed and if needed, use a ThreadPoolExecutor to invoke the app_callbacks.

	
	Uses retry_period/retry_timeout arguments instead of refreshPeriod/additionalTimeToWait

	
	Though the logic is pretty much the same, the names are a little clearer about the intent - the “retry_period”
controls how long the client waits before retrying a previously failed lock acquisition, and “retry_timeout”
controls how long the client keeps retrying before giving up and raising an error.

	
	Simplified sort-key handling

	
	The java library goes to great lengths to support the caller’s ability to use a simple hash-partitioned table
as well as a hash-and-range partitioned table. This python module drops the support for hash-partitioned
tables, and instead chooses to use a default sort-key of ‘-’ to simplify the implementation.

	
	Lock release best_effort mode

	
	The java library defaults to best_effort == False, whereas this python module defaults to True. i.e. trying
to release a lock without choosing an explicit “best_effort” setting, could result in Exceptions being
thrown in Java, but would be silently logged+swallowed in Python.

	
	Releasing all locks on client code

	
	The java library will always try to release all locks when closing the lock_client. This python module will
default to NOT releasing the locks on lock_client closure - but does support an optional argument called
“release_locks” that will allow the caller to request lock releases. The idea behind this is that it is not
a safe operation to release the locks without considering the application threads that could continue to
process under the assumption that they hold a lock on the underlying business entity. Making the caller
request the lock-release explicitly is meant to encourage them to try and wind up the application processing
first and release the locks first, before trying to close the lock_client.

	
	Dropped/Missing support for AWS RequestMetricCollector

	
	The java library has pervasive support for collecting the AWS request metrics. This python module does not
(yet) support this capability.

python_dynamodb_lock package

The package contains a single module - with the same name i.e. python_dynamodb_lock

python_dynamodb_lock module

This is a general purpose distributed locking library built on top of DynamoDB. It is heavily
“inspired” by the java-based AmazonDynamoDBLockClient library, and supports both coarse-grained
and fine-grained locking.

	
class DynamoDBLockClient(dynamodb_resource, table_name='DynamoDBLockTable', partition_key_name='lock_key', sort_key_name='sort_key', ttl_attribute_name='expiry_time', owner_name=None, heartbeat_period=datetime.timedelta(0, 5), safe_period=datetime.timedelta(0, 20), lease_duration=datetime.timedelta(0, 30), expiry_period=datetime.timedelta(0, 3600), heartbeat_tps=-1, app_callback_executor=None)[source]

	Bases: object

Provides distributed locks using DynamoDB’s support for conditional reads/writes.

	Parameters

	
	dynamodb_resource (boto3.ServiceResource) – mandatory argument

	table_name (str) – defaults to ‘DynamoDBLockTable’

	partition_key_name (str) – defaults to ‘lock_key’

	sort_key_name (str) – defaults to ‘sort_key’

	ttl_attribute_name (str) – defaults to ‘expiry_time’

	owner_name (str) – defaults to hostname + _uuid

	heartbeat_period (datetime.timedelta) – How often to update DynamoDB to note that the
instance is still running. It is recommended to make this at least 4 times smaller
than the leaseDuration. Defaults to 5 seconds.

	safe_period (datetime.timedelta) – How long is it okay to go without a heartbeat before
considering a lock to be in “danger”. Defaults to 20 seconds.

	lease_duration (datetime.timedelta) – The length of time that the lease for the lock
will be granted for. i.e. if there is no heartbeat for this period of time, then
the lock will be considered as expired. Defaults to 30 seconds.

	expiry_period (datetime.timedelta) – The fallback expiry timestamp to allow DynamoDB
to cleanup old locks after a server crash. This value should be significantly larger
than the _lease_duration to ensure that clock-skew etc. are not an issue. Defaults
to 1 hour.

	heartbeat_tps (int) – The number of heartbeats to execute per second (per node) - this
will have direct correlation to DynamoDB provisioned throughput for writes. If set
to -1, the client will distribute the heartbeat calls evenly over the _heartbeat_period
- which uses lower throughput for smaller number of locks. However, if you want a more
deterministic heartbeat-call-rate, then specify an explicit TPS value. Defaults to -1.

	app_callback_executor (ThreadPoolExecutor) – The executor to be used for invoking the
app_callbacks in case of un-expected errors. Defaults to a ThreadPoolExecutor with a
maximum of 5 threads.

	
acquire_lock(partition_key, sort_key='-', retry_period=None, retry_timeout=None, additional_attributes=None, app_callback=None, raise_context_exception=False)[source]

	Acquires a distributed DynaomDBLock for the given key(s).

If the lock is currently held by a different client, then this client will keep retrying on
a periodic basis. In that case, a few different things can happen:

	
	The other client releases the lock - basically deleting it from the database

	Which would allow this client to try and insert its own record instead.

	
	The other client dies, and the lock stops getting updated by the heartbeat thread.

	While waiting for a lock, this client keeps track of the local-time whenever it sees the lock’s
record-version-number change. From that point-in-time, it needs to wait for a period of time
equal to the lock’s lease duration before concluding that the lock has been abandoned and try
to overwrite the database entry with its own lock.

	
	This client goes over the max-retry-timeout-period

	While waiting for the other client to release the lock (or for the lock’s lease to expire), this
client may go over the retry_timeout period (as provided by the caller) - in which case, a
DynamoDBLockError with code == ACQUIRE_TIMEOUT will be thrown.

	
	Race-condition amongst multiple lock-clients waiting to acquire lock

	Whenever the “old” lock is released (or expires), there may be multiple “new” clients trying
to grab the lock - in which case, one of those would succeed, and the rest of them would get
a “conditional-update-exception”. This is just logged and swallowed internally - and the
client moves on to another sleep-retry cycle.

	
	Any other error/exception

	Would be wrapped inside a DynamoDBLockError and raised to the caller.

	Parameters

	
	partition_key (str) – The primary lock identifier

	sort_key (str) – Forms a “composite identifier” along with the partition_key. Defaults to ‘-’

	retry_period (datetime.timedelta) – If the lock is not immediately available, how long
should we wait between retries? Defaults to heartbeat_period.

	retry_timeout (datetime.timedelta) – If the lock is not available for an extended period,
how long should we keep trying before giving up and timing out? This value should be set
higher than the lease_duration to ensure that other clients can pick up locks abandoned
by one client. Defaults to lease_duration + heartbeat_period.

	additional_attributes (dict) – Arbitrary application metadata to be stored with the lock

	app_callback (Callable) – Callback function that can be used to notify the app of lock entering
the danger period, or an unexpected release

	raise_context_exception (bool) – Allow exception in the context to be raised

	Return type

	DynamoDBLock

	Returns

	A distributed lock instance

	
release_lock(lock, best_effort=True)[source]

	Releases the given lock - by deleting it from the database.

It allows the caller app to indicate whether it wishes to be informed of all errors/exceptions,
or just have the lock-client swallow all of them. A typical usage pattern would include acquiring
the lock, making app changes, and releasing the lock. By the time the app is releasing the lock,
it would generally be too late to respond to any errors encountered during the release phase - but,
the app may still wish to get informed and log it somewhere of offline re-conciliation/follow-up.

	Parameters

	
	lock (DynamoDBLock) – The lock instance that needs to be released

	best_effort (bool) – If True, any exception when calling DynamoDB will be ignored
and the clean up steps will continue, hence the lock item in DynamoDb might not
be updated / deleted but will eventually expire. Defaults to True.

	
close(release_locks=False)[source]

	Shuts down the background thread - and releases all locks if so asked.

By default, this method will NOT release all the locks - as releasing the locks while
the application is still making changes assuming that it has the lock can be dangerous.
As soon as a lock is released by this client, some other client may pick it up, and the
associated app may start processing the underlying business entity in parallel.

It is recommended that the application manage its shutdown-lifecycle such that all the
worker threads operating under these locks are first terminated (committed or rolled-back),
the corresponding locks released (one at a time - by each worker thread), and then the
lock_client.close() method is called. Alternatively, consider letting the process die
without releasing all the locks - they will be auto-released when their lease runs out
after a while.

	Parameters

	release_locks (bool) – if True, releases all the locks. Defaults to False.

	
classmethod create_dynamodb_table(dynamodb_client, table_name='DynamoDBLockTable', partition_key_name='lock_key', sort_key_name='sort_key', ttl_attribute_name='expiry_time', read_capacity=5, write_capacity=5)[source]

	Helper method to create the DynamoDB table

	Parameters

	
	dynamodb_client (boto3.DynamoDB.Client) – mandatory argument

	table_name (str) – defaults to ‘DynamoDBLockTable’

	partition_key_name (str) – defaults to ‘lock_key’

	sort_key_name (str) – defaults to ‘sort_key’

	ttl_attribute_name (str) – defaults to ‘expiry_time’

	read_capacity (int) – the max TPS for strongly-consistent reads; defaults to 5

	write_capacity (int) – the max TPS for write operations; defaults to 5

	
class BaseDynamoDBLock(partition_key, sort_key, owner_name, lease_duration, record_version_number, expiry_time, additional_attributes)[source]

	Bases: object

Represents a distributed lock - as stored in DynamoDB.

Typically used within the code to represent a lock held by some other lock-client.

	Parameters

	
	partition_key (str) – The primary lock identifier

	sort_key (str) – If present, forms a “composite identifier” along with the partition_key

	owner_name (str) – The owner name - typically from the lock_client

	lease_duration (float) – The lease duration in seconds - typically from the lock_client

	record_version_number (str) – A “liveness” indicating GUID - changes with every heartbeat

	expiry_time (int) – Epoch timestamp in seconds after which DynamoDB will auto-delete the record

	additional_attributes (dict) – Arbitrary application metadata to be stored with the lock

	
class DynamoDBLock(partition_key, sort_key, owner_name, lease_duration, record_version_number, expiry_time, additional_attributes, app_callback, lock_client, raise_context_exception)[source]

	Bases: python_dynamodb_lock.python_dynamodb_lock.BaseDynamoDBLock

Represents a lock that is owned by a local DynamoDBLockClient instance.

	Parameters

	
	partition_key (str) – The primary lock identifier

	sort_key (str) – If present, forms a “composite identifier” along with the partition_key

	owner_name (str) – The owner name - typically from the lock_client

	lease_duration (float) – The lease duration - typically from the lock_client

	record_version_number (str) – Changes with every heartbeat - the “liveness” indicator

	expiry_time (int) – Epoch timestamp in seconds after which DynamoDB will auto-delete the record

	additional_attributes (dict) – Arbitrary application metadata to be stored with the lock

	app_callback (Callable) – Callback function that can be used to notify the app of lock entering
the danger period, or an unexpected release

	lock_client (DynamoDBLockClient) – The client that “owns” this lock

	raise_context_exception (bool) – Allow exception in the context to be raised

	
PENDING = 'PENDING'

	

	
LOCKED = 'LOCKED'

	

	
RELEASED = 'RELEASED'

	

	
IN_DANGER = 'IN_DANGER'

	

	
INVALID = 'INVALID'

	

	
release(best_effort=True)[source]

	Calls the lock_client.release_lock(self, True) method

	Parameters

	best_effort (bool) – If True, any exception when calling DynamoDB will be ignored
and the clean up steps will continue, hence the lock item in DynamoDb might not
be updated / deleted but will eventually expire. Defaults to True.

	
exception DynamoDBLockError(code='UNKNOWN', message='Unknown error')[source]

	Bases: Exception

Wrapper for all kinds of errors that might occur during the acquire and release calls.

	
CLIENT_SHUTDOWN = 'CLIENT_SHUTDOWN'

	

	
ACQUIRE_TIMEOUT = 'ACQUIRE_TIMEOUT'

	

	
LOCK_NOT_OWNED = 'LOCK_NOT_OWNED'

	

	
LOCK_STOLEN = 'LOCK_STOLEN'

	

	
LOCK_IN_DANGER = 'LOCK_IN_DANGER'

	

	
UNKNOWN = 'UNKNOWN'

	

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit
helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/mohankishore/python_dynamodb_lock/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help
wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

Python DynamoDB Lock could always use more documentation, whether as part of the
official Python DynamoDB Lock docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/mohankishore/python_dynamodb_lock/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up python_dynamodb_lock for local development.

	Fork the python_dynamodb_lock repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/python_dynamodb_lock.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv python_dynamodb_lock
$ cd python_dynamodb_lock/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the
tests, including testing other Python versions with tox:

$ flake8 python_dynamodb_lock tests
$ python setup.py test or py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.7, 3.4, 3.5 and 3.6, and for PyPy. Check
https://travis-ci.org/whatnick/python_dynamodb_lock/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ python -m unittest tests.test_python_dynamodb_lock

Deploying

A reminder for the maintainers on how to deploy.
Make sure all your changes are committed (including an entry in HISTORY.rst).
Then run:

$ bumpversion patch # possible: major / minor / patch
$ git push
$ git push --tags

Travis will then deploy to PyPI if tests pass.

Credits

Development Lead

	Mohan Kishore <mohankishore@yahoo.com>

Contributors/Maintainers

	Tisham Dhar <whatnickd@gmail.com>

History

0.9.3 (2020-07-14)

	Forked Release from whatnick via CI

0.9.2 (2020-07-13)

	Forked Release from whatnick manual

0.9.1 (2019-10-29)

	Main repository second release

0.9.0 (2018-10-28)

	First release on PyPI.

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 python_dynamodb_lock	

 	
 	
 python_dynamodb_lock.python_dynamodb_lock	

Index

 A
 | B
 | C
 | D
 | I
 | L
 | P
 | R
 | U

A

 	
 	acquire_lock() (DynamoDBLockClient method)

 	
 	ACQUIRE_TIMEOUT (DynamoDBLockError attribute)

B

 	
 	BaseDynamoDBLock (class in python_dynamodb_lock.python_dynamodb_lock)

C

 	
 	CLIENT_SHUTDOWN (DynamoDBLockError attribute)

 	
 	close() (DynamoDBLockClient method)

 	create_dynamodb_table() (python_dynamodb_lock.python_dynamodb_lock.DynamoDBLockClient class method)

D

 	
 	DynamoDBLock (class in python_dynamodb_lock.python_dynamodb_lock)

 	
 	DynamoDBLockClient (class in python_dynamodb_lock.python_dynamodb_lock)

 	DynamoDBLockError

I

 	
 	IN_DANGER (DynamoDBLock attribute)

 	
 	INVALID (DynamoDBLock attribute)

L

 	
 	LOCK_IN_DANGER (DynamoDBLockError attribute)

 	LOCK_NOT_OWNED (DynamoDBLockError attribute)

 	
 	LOCK_STOLEN (DynamoDBLockError attribute)

 	LOCKED (DynamoDBLock attribute)

P

 	
 	PENDING (DynamoDBLock attribute)

 	
 	python_dynamodb_lock (module)

 	python_dynamodb_lock.python_dynamodb_lock (module)

R

 	
 	release() (DynamoDBLock method)

 	
 	release_lock() (DynamoDBLockClient method)

 	RELEASED (DynamoDBLock attribute)

U

 	
 	UNKNOWN (DynamoDBLockError attribute)

 All modules for which code is available

	python_dynamodb_lock.python_dynamodb_lock

 Source code for python_dynamodb_lock.python_dynamodb_lock

-*- coding: utf-8 -*-

"""
This is a general purpose distributed locking library built on top of DynamoDB. It is heavily
"inspired" by the java-based AmazonDynamoDBLockClient library, and supports both coarse-grained
and fine-grained locking.
"""

from botocore.exceptions import ClientError
from concurrent.futures import ThreadPoolExecutor
import datetime
from decimal import Decimal
import logging
import socket
import time
import threading
from urllib.parse import quote
import uuid

module level logger
logger = logging.getLogger(__name__)

[docs]class DynamoDBLockClient:
 """
 Provides distributed locks using DynamoDB's support for conditional reads/writes.
 """

 # default values for class properties
 _DEFAULT_TABLE_NAME = 'DynamoDBLockTable'
 _DEFAULT_PARTITION_KEY_NAME = 'lock_key'
 _DEFAULT_SORT_KEY_NAME = 'sort_key'
 _DEFAULT_TTL_ATTRIBUTE_NAME = 'expiry_time'
 _DEFAULT_HEARTBEAT_PERIOD = datetime.timedelta(seconds=5)
 _DEFAULT_SAFE_PERIOD = datetime.timedelta(seconds=20)
 _DEFAULT_LEASE_DURATION = datetime.timedelta(seconds=30)
 _DEFAULT_EXPIRY_PERIOD = datetime.timedelta(hours=1)
 _DEFAULT_HEARTBEAT_TPS = -1
 _DEFAULT_APP_CALLBACK_THREADPOOL_SIZE = 5
 # for optional create-table method
 _DEFAULT_READ_CAPACITY = 5
 _DEFAULT_WRITE_CAPACITY = 5

 # to help make the sort-key optional
 _DEFAULT_SORT_KEY_VALUE = '-'

 # DynamoDB "hard-coded" column names
 _COL_OWNER_NAME = 'owner_name'
 _COL_LEASE_DURATION = 'lease_duration'
 _COL_RECORD_VERSION_NUMBER = 'record_version_number'

 def __init__(self,
 dynamodb_resource,
 table_name=_DEFAULT_TABLE_NAME,
 partition_key_name=_DEFAULT_PARTITION_KEY_NAME,
 sort_key_name=_DEFAULT_SORT_KEY_NAME,
 ttl_attribute_name=_DEFAULT_TTL_ATTRIBUTE_NAME,
 owner_name=None,
 heartbeat_period=_DEFAULT_HEARTBEAT_PERIOD,
 safe_period=_DEFAULT_SAFE_PERIOD,
 lease_duration=_DEFAULT_LEASE_DURATION,
 expiry_period=_DEFAULT_EXPIRY_PERIOD,
 heartbeat_tps=_DEFAULT_HEARTBEAT_TPS,
 app_callback_executor=None
):
 """
 :param boto3.ServiceResource dynamodb_resource: mandatory argument
 :param str table_name: defaults to 'DynamoDBLockTable'
 :param str partition_key_name: defaults to 'lock_key'
 :param str sort_key_name: defaults to 'sort_key'
 :param str ttl_attribute_name: defaults to 'expiry_time'
 :param str owner_name: defaults to hostname + _uuid
 :param datetime.timedelta heartbeat_period: How often to update DynamoDB to note that the
 instance is still running. It is recommended to make this at least 4 times smaller
 than the leaseDuration. Defaults to 5 seconds.
 :param datetime.timedelta safe_period: How long is it okay to go without a heartbeat before
 considering a lock to be in "danger". Defaults to 20 seconds.
 :param datetime.timedelta lease_duration: The length of time that the lease for the lock
 will be granted for. i.e. if there is no heartbeat for this period of time, then
 the lock will be considered as expired. Defaults to 30 seconds.
 :param datetime.timedelta expiry_period: The fallback expiry timestamp to allow DynamoDB
 to cleanup old locks after a server crash. This value should be significantly larger
 than the _lease_duration to ensure that clock-skew etc. are not an issue. Defaults
 to 1 hour.
 :param int heartbeat_tps: The number of heartbeats to execute per second (per node) - this
 will have direct correlation to DynamoDB provisioned throughput for writes. If set
 to -1, the client will distribute the heartbeat calls evenly over the _heartbeat_period
 - which uses lower throughput for smaller number of locks. However, if you want a more
 deterministic heartbeat-call-rate, then specify an explicit TPS value. Defaults to -1.
 :param ThreadPoolExecutor app_callback_executor: The executor to be used for invoking the
 app_callbacks in case of un-expected errors. Defaults to a ThreadPoolExecutor with a
 maximum of 5 threads.
 """
 self._uuid = uuid.uuid4().hex
 self._dynamodb_resource = dynamodb_resource
 self._table_name = table_name
 self._partition_key_name = partition_key_name
 self._sort_key_name = sort_key_name
 self._ttl_attribute_name = ttl_attribute_name
 self._owner_name = owner_name or (socket.getfqdn() + self._uuid)
 self._heartbeat_period = heartbeat_period
 self._safe_period = safe_period
 self._lease_duration = lease_duration
 self._expiry_period = expiry_period
 self._heartbeat_tps = heartbeat_tps
 self._app_callback_executor = app_callback_executor or ThreadPoolExecutor(
 max_workers=self._DEFAULT_APP_CALLBACK_THREADPOOL_SIZE,
 thread_name_prefix='DynamoDBLockClient-AC-' + self._uuid + "-"
)
 # additional properties
 self._locks = {}
 self._shutting_down = False
 self._dynamodb_table = dynamodb_resource.Table(table_name)
 # and, initialization
 self._start_heartbeat_sender_thread()
 self._start_heartbeat_checker_thread()
 logger.info('Created: %s', str(self))

 def _start_heartbeat_sender_thread(self):
 """
 Creates and starts a daemon thread - that sends out periodic heartbeats for the active locks
 """
 self._heartbeat_sender_thread = threading.Thread(
 name='DynamoDBLockClient-HS-' + self._uuid,
 target=self._send_heartbeat_loop
)
 self._heartbeat_sender_thread.daemon = True
 self._heartbeat_sender_thread.start()
 logger.info('Started the heartbeat-sender thread: %s', str(self._heartbeat_sender_thread))

 def _send_heartbeat_loop(self):
 """
 Keeps renewing the leases for the locks owned by this client - till the client is closed.

 The method has a while loop that wakes up on a periodic basis (as defined by the _heartbeat_period)
 and invokes the _send_heartbeat() method on each lock. It spreads the heartbeat-calls evenly over
 the heartbeat window - to minimize the DynamoDB write throughput requirements.
 """
 while not self._shutting_down:
 logger.info('Starting a send_heartbeat loop')
 start_time = time.monotonic()
 locks = self._locks.copy()

 avg_loop_time = 1.0 / self._heartbeat_tps
 if self._heartbeat_tps == -1:
 # use an "adaptive" algorithm if the TPS is set to -1
 avg_loop_time = self._heartbeat_period.total_seconds() / len(locks) if locks else -1.0

 count = 0
 for uid, lock in locks.items():
 count += 1
 self._send_heartbeat(lock)
 # After each lock, sleep a little (if needed) to honor the _heartbeat_tps
 curr_loop_end_time = time.monotonic()
 next_loop_start_time = start_time + count * avg_loop_time
 if curr_loop_end_time < next_loop_start_time:
 time.sleep(next_loop_start_time - curr_loop_end_time)

 # After all the locks have been "heartbeat"-ed, sleep before the next run (if needed)
 logger.info('Finished the send_heartbeat loop')
 end_time = time.monotonic()
 next_start_time = start_time + self._heartbeat_period.total_seconds()
 if end_time < next_start_time and not self._shutting_down:
 time.sleep(next_start_time - end_time)
 elif end_time > next_start_time + avg_loop_time:
 logger.warning('Sending heartbeats for all the locks took longer than the _heartbeat_period')

 def _send_heartbeat(self, lock):
 """
 Renews the lease for the given lock.

 It actually just switches the record_version_number on the existing lock - which tells
 all other clients waiting for this lock that the current owner is still alive, and they
 effectively reset their timers (to wait for _lease_duration from the time they see this
 new record_version_number).

 As this method is called on a background thread, it uses the app_callback to let the
 (lock requestor) app know when there are significant events in the lock lifecycle.

 1) LOCK_STOLEN
 When the heartbeat process finds that someone else has taken over the lock,
 or it has been released/deleted without the lock-client's knowledge. In this case, the
 app_callback should just try to abort its processing and roll back any changes it had
 made with the assumption that it owned the lock. This is not a normal occurrance and
 should only happen if someone manually changes/deletes the data in DynamoDB.

 :param DynamoDBLock lock: the lock instance that needs its lease to be renewed
 """
 logger.info('Sending a DynamoDBLock heartbeat: %s', lock.unique_identifier)
 with lock.thread_lock:
 try:
 # the ddb-lock might have been released while waiting for the thread-lock
 if lock.unique_identifier not in self._locks: return

 # skip if the lock is not in the LOCKED state
 if lock.status != DynamoDBLock.LOCKED:
 logger.info('Skipping the heartbeat as the lock is not locked any more: %s', lock.status)
 return

 old_record_version_number = lock.record_version_number
 new_record_version_number = str(uuid.uuid4())
 new_expiry_time = int(time.time() + self._expiry_period.total_seconds())

 # first, try to update the database
 self._dynamodb_table.update_item(
 Key={
 self._partition_key_name: lock.partition_key,
 self._sort_key_name: lock.sort_key
 },
 UpdateExpression='SET #rvn = :new_rvn, #et = :new_et',
 ConditionExpression='attribute_exists(#pk) AND attribute_exists(#sk) AND #rvn = :old_rvn',
 ExpressionAttributeNames={
 '#pk': self._partition_key_name,
 '#sk': self._sort_key_name,
 '#rvn': self._COL_RECORD_VERSION_NUMBER,
 '#et': self._ttl_attribute_name,
 },
 ExpressionAttributeValues={
 ':old_rvn': old_record_version_number,
 ':new_rvn': new_record_version_number,
 ':new_et': new_expiry_time,
 }
)

 # if successful, update the in-memory lock representations
 lock.record_version_number = new_record_version_number
 lock.expiry_time = new_expiry_time
 lock.last_updated_time = time.monotonic()
 lock.status = DynamoDBLock.LOCKED
 logger.debug('Successfully sent the heartbeat: %s', lock.unique_identifier)
 except ClientError as e:
 if e.response['Error']['Code'] == 'ConditionalCheckFailedException':
 # someone else stole our lock!
 logger.warning('LockStolenError while sending heartbeat: %s', lock.unique_identifier)
 # let's mark the in-memory lock representation as invalid
 lock.status = DynamoDBLock.INVALID
 # let's drop it from our in-memory collection as well
 del self._locks[lock.unique_identifier]
 # callback - the app should abort its processing; no need to release
 self._call_app_callback(lock, DynamoDBLockError.LOCK_STOLEN)
 else:
 logger.warning('ClientError while sending heartbeat: %s', lock.unique_identifier, exc_info=True)
 except Exception:
 logger.warning('Unexpected error while sending heartbeat: %s', lock.unique_identifier, exc_info=True)

 def _start_heartbeat_checker_thread(self):
 """
 Creates and starts a daemon thread - that checks that the locks are heartbeat-ing as expected
 """
 self._heartbeat_checker_thread = threading.Thread(
 name='DynamoDBLockClient-HC-' + self._uuid,
 target=self._check_heartbeat_loop
)
 self._heartbeat_checker_thread.daemon = True
 self._heartbeat_checker_thread.start()
 logger.info('Started the heartbeat-checker thread: %s', str(self._heartbeat_checker_thread))

 def _check_heartbeat_loop(self):
 """
 Keeps checking the locks to ensure that they are being updated as expected.

 The method has a while loop that wakes up on a periodic basis (as defined by the _heartbeat_period)
 and invokes the _check_heartbeat() method on each lock.
 """
 while not self._shutting_down:
 logger.info('Starting a check_heartbeat loop')
 start_time = time.monotonic()
 locks = self._locks.copy()

 for uid, lock in locks.items():
 self._check_heartbeat(lock)

 # After all the locks have been "heartbeat"-ed, sleep before the next run (if needed)
 logger.info('Finished the check_heartbeat loop')
 end_time = time.monotonic()
 next_start_time = start_time + self._heartbeat_period.total_seconds()
 if end_time < next_start_time and not self._shutting_down:
 time.sleep(next_start_time - end_time)
 else:
 logger.warning('Checking heartbeats for all the locks took longer than the _heartbeat_period')

 def _check_heartbeat(self, lock):
 """
 Checks that the given lock's lease expiry is within the safe-period.

 As this method is called on a background thread, it uses the app_callback to let the
 (lock requestor) app know when there are significant events in the lock lifecycle.

 1) LOCK_IN_DANGER
 When the heartbeat for a given lock has failed multiple times, and it is
 now in danger of going past its lease-duration without a successful heartbeat - at which
 point, any other client waiting to acquire the lock will consider it abandoned and take
 over. In this case, the app_callback should try to expedite the processing, either
 commit or rollback its changes quickly, and release the lock.

 :param DynamoDBLock lock: the lock instance that needs its lease to be renewed
 """
 logger.info('Checking a DynamoDBLock heartbeat: %s', lock.unique_identifier)

 with lock.thread_lock:
 try:
 # the ddb-lock might have been released while waiting for the thread-lock
 if lock.unique_identifier not in self._locks: return

 # skip if the lock is not in the LOCKED state
 if lock.status != DynamoDBLock.LOCKED:
 logger.info('Skipping the check as the lock is not locked any more: %s', lock.status)
 return

 # if the lock is in danger, invoke the app-callback
 safe_period_end_time = lock.last_updated_time + self._safe_period.total_seconds()
 if time.monotonic() < safe_period_end_time:
 logger.info('Lock is safe: %s', lock.unique_identifier)
 # let's leave the lock.status as-is i.e. LOCKED
 else:
 logger.warning('Lock is in danger: %s', lock.unique_identifier)
 # let's flag the in-memory instance as being in danger
 lock.status = DynamoDBLock.IN_DANGER
 # callback - the app should abort its processing, and release the lock
 self._call_app_callback(lock, DynamoDBLockError.LOCK_IN_DANGER)

 logger.debug('Successfully checked the heartbeat: %s', lock.unique_identifier)
 except Exception:
 logger.warning('Unexpected error while checking heartbeat: %s', lock.unique_identifier, exc_info=True)

 def _call_app_callback(self, lock, code):
 """
 Utility function to route the app_callback through the thread-pool-executor

 :param DynamoDBLock lock: the lock for which the event is being fired
 :param str code: the notification event-type
 """
 self._app_callback_executor.submit(lock.app_callback, code, lock)

[docs] def acquire_lock(self,
 partition_key,
 sort_key=_DEFAULT_SORT_KEY_VALUE,
 retry_period=None,
 retry_timeout=None,
 additional_attributes=None,
 app_callback=None,
 raise_context_exception=False,
):
 """
 Acquires a distributed DynaomDBLock for the given key(s).

 If the lock is currently held by a different client, then this client will keep retrying on
 a periodic basis. In that case, a few different things can happen:

 1) The other client releases the lock - basically deleting it from the database
 Which would allow this client to try and insert its own record instead.
 2) The other client dies, and the lock stops getting updated by the heartbeat thread.
 While waiting for a lock, this client keeps track of the local-time whenever it sees the lock's
 record-version-number change. From that point-in-time, it needs to wait for a period of time
 equal to the lock's lease duration before concluding that the lock has been abandoned and try
 to overwrite the database entry with its own lock.
 3) This client goes over the max-retry-timeout-period
 While waiting for the other client to release the lock (or for the lock's lease to expire), this
 client may go over the retry_timeout period (as provided by the caller) - in which case, a
 DynamoDBLockError with code == ACQUIRE_TIMEOUT will be thrown.
 4) Race-condition amongst multiple lock-clients waiting to acquire lock
 Whenever the "old" lock is released (or expires), there may be multiple "new" clients trying
 to grab the lock - in which case, one of those would succeed, and the rest of them would get
 a "conditional-update-exception". This is just logged and swallowed internally - and the
 client moves on to another sleep-retry cycle.
 5) Any other error/exception
 Would be wrapped inside a DynamoDBLockError and raised to the caller.

 :param str partition_key: The primary lock identifier
 :param str sort_key: Forms a "composite identifier" along with the partition_key. Defaults to '-'
 :param datetime.timedelta retry_period: If the lock is not immediately available, how long
 should we wait between retries? Defaults to heartbeat_period.
 :param datetime.timedelta retry_timeout: If the lock is not available for an extended period,
 how long should we keep trying before giving up and timing out? This value should be set
 higher than the lease_duration to ensure that other clients can pick up locks abandoned
 by one client. Defaults to lease_duration + heartbeat_period.
 :param dict additional_attributes: Arbitrary application metadata to be stored with the lock
 :param Callable app_callback: Callback function that can be used to notify the app of lock entering
 the danger period, or an unexpected release
 :param bool raise_context_exception: Allow exception in the context to be raised
 :rtype: DynamoDBLock
 :return: A distributed lock instance
 """
 logger.info('Trying to acquire lock for: %s, %s', partition_key, sort_key)

 # plug in default values as needed
 if not retry_period: retry_period = self._heartbeat_period
 if not retry_timeout: retry_timeout = self._lease_duration + self._heartbeat_period

 # create the "new" lock that needs to be acquired
 new_lock = DynamoDBLock(
 partition_key=partition_key,
 sort_key=sort_key,
 owner_name=self._owner_name,
 lease_duration=self._lease_duration.total_seconds(),
 record_version_number=str(uuid.uuid4()),
 expiry_time=int(time.time() + self._expiry_period.total_seconds()),
 additional_attributes=additional_attributes,
 app_callback=app_callback,
 lock_client=self,
 raise_context_exception=raise_context_exception,
)

 start_time = time.monotonic()
 retry_timeout_time = start_time + retry_timeout.total_seconds()
 retry_count = 0
 last_record_version_number = None
 last_version_fetch_time = -1.0
 while True:
 if self._shutting_down:
 raise DynamoDBLockError(DynamoDBLockError.CLIENT_SHUTDOWN, 'Client already shut down')

 try:
 # need to bump up the expiry time - to account for the sleep between tries
 new_lock.last_updated_time = time.monotonic()
 new_lock.expiry_time = int(time.time() + self._expiry_period.total_seconds())

 logger.debug('Checking the database for existing owner: %s', new_lock.unique_identifier)
 existing_lock = self._get_lock_from_dynamodb(partition_key, sort_key)

 if existing_lock is None:
 logger.debug('No existing lock - attempting to add one: %s', new_lock.unique_identifier)
 self._add_new_lock_to_dynamodb(new_lock)
 logger.debug('Added to the DDB. Adding to in-memory map: %s', new_lock.unique_identifier)
 new_lock.status = DynamoDBLock.LOCKED
 self._locks[new_lock.unique_identifier] = new_lock
 logger.info('Successfully added a new lock: %s', str(new_lock))
 return new_lock
 else:
 if existing_lock.record_version_number != last_record_version_number:
 logger.debug('Existing lock\'s record_version_number changed: %s, %s, %s',
 new_lock.unique_identifier,
 last_record_version_number,
 existing_lock.record_version_number)
 # if the record_version_number changes, the lock gets a fresh lease of life
 # keep track of the time we first saw this record_version_number
 last_record_version_number = existing_lock.record_version_number
 last_version_fetch_time = time.monotonic()
 else:
 logger.debug('Existing lock\'s record_version_number has not changed: %s, %s',
 new_lock.unique_identifier,
 last_record_version_number)
 # if the record_version_number has not changed for more than _lease_duration period,
 # it basically means that the owner thread/process has died.
 if existing_lock.expiry_time < time.time():
 logger.warning('Existing lock\'s lease has expired: %s (%s)', str(existing_lock), time.time())
 self._overwrite_existing_lock_in_dynamodb(new_lock, last_record_version_number)
 logger.debug('Added to the DDB. Adding to in-memory map: %s', new_lock.unique_identifier)
 new_lock.status = DynamoDBLock.LOCKED
 self._locks[new_lock.unique_identifier] = new_lock
 logger.info('Successfully updated with the new lock: %s', str(new_lock))
 return new_lock
 except ClientError as e:
 if e.response['Error']['Code'] == 'ConditionalCheckFailedException':
 logger.info(
 'Someone else beat us to it - just log-it, sleep and retry: %s',
 new_lock.unique_identifier
)
 else:
 raise DynamoDBLockError(DynamoDBLockError.UNKNOWN, str(e))
 except Exception as e:
 raise DynamoDBLockError(DynamoDBLockError.UNKNOWN, str(e))

 # sleep and retry
 retry_count += 1
 curr_loop_end_time = time.monotonic()
 next_loop_start_time = start_time + retry_count * retry_period.total_seconds()
 if next_loop_start_time > retry_timeout_time:
 raise DynamoDBLockError(
 DynamoDBLockError.ACQUIRE_TIMEOUT,
 'acquire_lock() timed out: ' + new_lock.unique_identifier
)
 elif next_loop_start_time > curr_loop_end_time:
 logger.info('Sleeping before a retry: %s', new_lock.unique_identifier)
 time.sleep(next_loop_start_time - curr_loop_end_time)

[docs] def release_lock(self, lock, best_effort=True):
 """
 Releases the given lock - by deleting it from the database.

 It allows the caller app to indicate whether it wishes to be informed of all errors/exceptions,
 or just have the lock-client swallow all of them. A typical usage pattern would include acquiring
 the lock, making app changes, and releasing the lock. By the time the app is releasing the lock,
 it would generally be too late to respond to any errors encountered during the release phase - but,
 the app may still wish to get informed and log it somewhere of offline re-conciliation/follow-up.

 :param DynamoDBLock lock: The lock instance that needs to be released
 :param bool best_effort: If True, any exception when calling DynamoDB will be ignored
 and the clean up steps will continue, hence the lock item in DynamoDb might not
 be updated / deleted but will eventually expire. Defaults to True.
 """
 logger.info('Releasing the lock: %s', str(lock))

 with lock.thread_lock:
 try:
 # if the lock is not in a locked state, it's a no-op (i.e. released or stolen/invalid)
 if lock.status not in [DynamoDBLock.LOCKED, DynamoDBLock.IN_DANGER]:
 logger.info('Skipping the release as the lock is not locked any more: %s', lock.status)
 return

 # if this client did not create the lock being released
 if lock.unique_identifier not in self._locks:
 if best_effort:
 logger.warning('Lock not owned by this client: %s', str(lock))
 return
 else:
 raise DynamoDBLockError(DynamoDBLockError.LOCK_NOT_OWNED, 'Lock is not owned by this client')

 # first, remove from in-memory locks - will stop the heartbeats
 # even if the database call fails, it will auto-release after the lease expires
 lock.status = DynamoDBLock.RELEASED
 del self._locks[lock.unique_identifier]

 # then, remove it from the database
 self._dynamodb_table.delete_item(
 Key={
 self._partition_key_name: lock.partition_key,
 self._sort_key_name: lock.sort_key
 },
 ConditionExpression='attribute_exists(#pk) AND attribute_exists(#sk) AND #rvn = :rvn',
 ExpressionAttributeNames={
 '#pk': self._partition_key_name,
 '#sk': self._sort_key_name,
 '#rvn': self._COL_RECORD_VERSION_NUMBER,
 },
 ExpressionAttributeValues={
 ':rvn': lock.record_version_number,
 }
)

 logger.info('Successfully released the lock: %s', lock.unique_identifier)
 except DynamoDBLockError as e:
 raise e
 except ClientError as e:
 if best_effort:
 logger.warning('DynamoDb error while releasing lock: %s', lock.unique_identifier, exc_info=True)
 elif e.response['Error']['Code'] == 'ConditionalCheckFailedException':
 # Note: this is slightly different from the Java impl - which would just returns false
 raise DynamoDBLockError(DynamoDBLockError.LOCK_STOLEN, 'Lock was stolen by someone else')
 else:
 raise DynamoDBLockError(DynamoDBLockError.UNKNOWN, str(e))
 except Exception as e:
 if best_effort:
 logger.warning('Unknown error while releasing lock: %s', lock.unique_identifier, exc_info=True)
 else:
 raise DynamoDBLockError(DynamoDBLockError.UNKNOWN, str(e))

 def _get_lock_from_dynamodb(self, partition_key, sort_key):
 """
 Loads the lock from the database - or returns None if not available.

 :rtype: BaseDynamoDBLock
 """
 logger.debug('Getting the lock from dynamodb for: %s, %s', partition_key, sort_key)
 result = self._dynamodb_table.get_item(
 Key={
 self._partition_key_name: partition_key,
 self._sort_key_name: sort_key
 },
 ConsistentRead=True
)
 if 'Item' in result:
 return self._get_lock_from_item(result['Item'])
 else:
 return None

 def _add_new_lock_to_dynamodb(self, lock):
 """
 Adds a new lock into the database - while checking that it does not exist already.

 :param DynamoDBLock lock: The lock instance that needs to be added to the database.
 """
 logger.debug('Adding a new lock: %s', str(lock))
 self._dynamodb_table.put_item(
 Item=self._get_item_from_lock(lock),
 ConditionExpression='NOT(attribute_exists(#pk) AND attribute_exists(#sk))',
 ExpressionAttributeNames={
 '#pk': self._partition_key_name,
 '#sk': self._sort_key_name,
 },
)

 def _overwrite_existing_lock_in_dynamodb(self, lock, record_version_number):
 """
 Overwrites an existing lock in the database - while checking that the version has not changed.

 :param DynamoDBLock lock: The new lock instance that needs to overwrite the old one in the database.
 :param str record_version_number: The version-number for the old lock instance in the database.
 """
 logger.debug('Overwriting existing-rvn: %s with new lock: %s', record_version_number, str(lock))
 self._dynamodb_table.put_item(
 Item=self._get_item_from_lock(lock),
 ConditionExpression='attribute_exists(#pk) AND attribute_exists(#sk) AND #rvn = :old_rvn',
 ExpressionAttributeNames={
 '#pk': self._partition_key_name,
 '#sk': self._sort_key_name,
 '#rvn': self._COL_RECORD_VERSION_NUMBER,
 },
 ExpressionAttributeValues={
 ':old_rvn': record_version_number,
 }
)

 def _get_lock_from_item(self, item):
 """
 Converts a DynamoDB 'Item' dict to a BaseDynamoDBLock instance

 :param dict item: The DynamoDB 'Item' dict object to be de-serialized.
 :rtype: BaseDynamoDBLock
 """
 logger.debug('Get lock from item: %s', str(item))
 lock = BaseDynamoDBLock(
 partition_key=item.pop(self._partition_key_name),
 sort_key=item.pop(self._sort_key_name),
 owner_name=item.pop(self._COL_OWNER_NAME),
 lease_duration=float(item.pop(self._COL_LEASE_DURATION)),
 record_version_number=item.pop(self._COL_RECORD_VERSION_NUMBER),
 expiry_time=int(item.pop(self._ttl_attribute_name)),
 additional_attributes=item
)
 return lock

 def _get_item_from_lock(self, lock):
 """
 Converts a BaseDynamoDBLock (or subclass) instance to a DynamoDB 'Item' dict

 :param BaseDynamoDBLock lock: The lock instance to be serialized.
 :rtype: dict
 """
 logger.debug('Get item from lock: %s', str(lock))
 item = lock.additional_attributes.copy()
 item.update({
 self._partition_key_name: lock.partition_key,
 self._sort_key_name: lock.sort_key,
 self._COL_OWNER_NAME: lock.owner_name,
 self._COL_LEASE_DURATION: Decimal.from_float(lock.lease_duration),
 self._COL_RECORD_VERSION_NUMBER: lock.record_version_number,
 self._ttl_attribute_name: lock.expiry_time
 })
 return item

 def _release_all_locks(self):
 """
 Iterates over all the locks and releases each one.
 """
 logger.info('Releasing all locks: %d', len(self._locks))
 for uid, lock in self._locks.copy().items():
 self.release_lock(lock, best_effort=True)
 # TODO: should we fire app-callback to indicate the force-release
 # self._call_app_callback(lock, DynamoDBLockError.LOCK_STOLEN)

[docs] def close(self, release_locks=False):
 """
 Shuts down the background thread - and releases all locks if so asked.

 By default, this method will NOT release all the locks - as releasing the locks while
 the application is still making changes assuming that it has the lock can be dangerous.
 As soon as a lock is released by this client, some other client may pick it up, and the
 associated app may start processing the underlying business entity in parallel.

 It is recommended that the application manage its shutdown-lifecycle such that all the
 worker threads operating under these locks are first terminated (committed or rolled-back),
 the corresponding locks released (one at a time - by each worker thread), and then the
 lock_client.close() method is called. Alternatively, consider letting the process die
 without releasing all the locks - they will be auto-released when their lease runs out
 after a while.

 :param bool release_locks: if True, releases all the locks. Defaults to False.
 """
 if self._shutting_down: return
 logger.info('Shutting down')
 self._shutting_down = True
 self._heartbeat_sender_thread.join()
 self._heartbeat_checker_thread.join()
 if release_locks: self._release_all_locks()

 def __str__(self):
 """
 Returns a readable string representation of this instance.
 """
 return '%s::%s' % (self.__class__.__name__, self.__dict__)

[docs] @classmethod
 def create_dynamodb_table(cls,
 dynamodb_client,
 table_name=_DEFAULT_TABLE_NAME,
 partition_key_name=_DEFAULT_PARTITION_KEY_NAME,
 sort_key_name=_DEFAULT_SORT_KEY_NAME,
 ttl_attribute_name=_DEFAULT_TTL_ATTRIBUTE_NAME,
 read_capacity=_DEFAULT_READ_CAPACITY,
 write_capacity=_DEFAULT_WRITE_CAPACITY):

 """
 Helper method to create the DynamoDB table

 :param boto3.DynamoDB.Client dynamodb_client: mandatory argument
 :param str table_name: defaults to 'DynamoDBLockTable'
 :param str partition_key_name: defaults to 'lock_key'
 :param str sort_key_name: defaults to 'sort_key'
 :param str ttl_attribute_name: defaults to 'expiry_time'
 :param int read_capacity: the max TPS for strongly-consistent reads; defaults to 5
 :param int write_capacity: the max TPS for write operations; defaults to 5
 """
 logger.info("Creating the lock table: %s", table_name)
 dynamodb_client.create_table(
 TableName=table_name,
 KeySchema=[
 {
 'AttributeName': partition_key_name,
 'KeyType': 'HASH'
 },
 {
 'AttributeName': sort_key_name,
 'KeyType': 'RANGE'
 },
],
 AttributeDefinitions=[
 {
 'AttributeName': partition_key_name,
 'AttributeType': 'S'
 },
 {
 'AttributeName': sort_key_name,
 'AttributeType': 'S'
 },
],
 ProvisionedThroughput={
 'ReadCapacityUnits': read_capacity,
 'WriteCapacityUnits': write_capacity
 },
)
 cls._wait_for_table_to_be_active(dynamodb_client, table_name)

 logger.info("Updating the table with time_to_live configuration")
 dynamodb_client.update_time_to_live(
 TableName=table_name,
 TimeToLiveSpecification={
 'Enabled': True,
 'AttributeName': ttl_attribute_name
 }
)
 cls._wait_for_table_to_be_active(dynamodb_client, table_name)

 @classmethod
 def _wait_for_table_to_be_active(cls, dynamodb_client, table_name):
 logger.info("Waiting till the table becomes ACTIVE")
 while True:
 response = dynamodb_client.describe_table(TableName=table_name)
 status = response.get('Table', {}).get('TableStatus', 'UNKNOWN')
 logger.info("Table status: %s", status)
 if status == 'ACTIVE':
 break
 else:
 time.sleep(2)

[docs]class BaseDynamoDBLock:
 """
 Represents a distributed lock - as stored in DynamoDB.

 Typically used within the code to represent a lock held by some other lock-client.
 """

 def __init__(self,
 partition_key,
 sort_key,
 owner_name,
 lease_duration,
 record_version_number,
 expiry_time,
 additional_attributes
):
 """
 :param str partition_key: The primary lock identifier
 :param str sort_key: If present, forms a "composite identifier" along with the partition_key
 :param str owner_name: The owner name - typically from the lock_client
 :param float lease_duration: The lease duration in seconds - typically from the lock_client
 :param str record_version_number: A "liveness" indicating GUID - changes with every heartbeat
 :param int expiry_time: Epoch timestamp in seconds after which DynamoDB will auto-delete the record
 :param dict additional_attributes: Arbitrary application metadata to be stored with the lock
 """
 self.partition_key = partition_key
 self.sort_key = sort_key
 self.owner_name = owner_name
 self.lease_duration = lease_duration
 self.record_version_number = record_version_number
 self.expiry_time = expiry_time
 self.additional_attributes = additional_attributes or {}
 # additional properties
 self.unique_identifier = quote(partition_key) + '|' + quote(sort_key)

 def __str__(self):
 """
 Returns a readable string representation of this instance.
 """
 return '%s::%s' % (self.__class__.__name__, self.__dict__)

[docs]class DynamoDBLock(BaseDynamoDBLock):
 """
 Represents a lock that is owned by a local DynamoDBLockClient instance.
 """

 PENDING = 'PENDING'
 LOCKED = 'LOCKED'
 RELEASED = 'RELEASED'
 IN_DANGER = 'IN_DANGER'
 INVALID = 'INVALID'

 def __init__(self,
 partition_key,
 sort_key,
 owner_name,
 lease_duration,
 record_version_number,
 expiry_time,
 additional_attributes,
 app_callback,
 lock_client,
 raise_context_exception,
):
 """
 :param str partition_key: The primary lock identifier
 :param str sort_key: If present, forms a "composite identifier" along with the partition_key
 :param str owner_name: The owner name - typically from the lock_client
 :param float lease_duration: The lease duration - typically from the lock_client
 :param str record_version_number: Changes with every heartbeat - the "liveness" indicator
 :param int expiry_time: Epoch timestamp in seconds after which DynamoDB will auto-delete the record
 :param dict additional_attributes: Arbitrary application metadata to be stored with the lock

 :param Callable app_callback: Callback function that can be used to notify the app of lock entering
 the danger period, or an unexpected release
 :param DynamoDBLockClient lock_client: The client that "owns" this lock
 :param bool raise_context_exception: Allow exception in the context to be raised
 """
 BaseDynamoDBLock.__init__(self,
 partition_key,
 sort_key,
 owner_name,
 lease_duration,
 record_version_number,
 expiry_time,
 additional_attributes
)
 self.app_callback = app_callback
 self.lock_client = lock_client
 self.raise_context_exception = raise_context_exception
 # additional properties
 self.last_updated_time = time.monotonic()
 self.thread_lock = threading.RLock()
 self.status = self.PENDING

 def __enter__(self):
 """
 No-op - returns itself
 """
 logger.debug('Entering: %s', self.unique_identifier)
 return self

 def __exit__(self, exc_type, exc_value, traceback):
 """
 Releases the lock - with best_effort=True
 """
 logger.debug('Exiting: %s', self.unique_identifier)
 self.release(best_effort=True)
 if not self.raise_context_exception:
 return True

[docs] def release(self, best_effort=True):
 """
 Calls the lock_client.release_lock(self, True) method

 :param bool best_effort: If True, any exception when calling DynamoDB will be ignored
 and the clean up steps will continue, hence the lock item in DynamoDb might not
 be updated / deleted but will eventually expire. Defaults to True.
 """
 logger.debug('Releasing: %s', self.unique_identifier)
 self.lock_client.release_lock(self, best_effort)

[docs]class DynamoDBLockError(Exception):
 """
 Wrapper for all kinds of errors that might occur during the acquire and release calls.
 """

 # code-constants
 CLIENT_SHUTDOWN = 'CLIENT_SHUTDOWN'
 ACQUIRE_TIMEOUT = 'ACQUIRE_TIMEOUT'
 LOCK_NOT_OWNED = 'LOCK_NOT_OWNED'
 LOCK_STOLEN = 'LOCK_STOLEN'
 LOCK_IN_DANGER = 'LOCK_IN_DANGER'
 UNKNOWN = 'UNKNOWN'

 def __init__(self,
 code='UNKNOWN',
 message='Unknown error'
):
 Exception.__init__(self)
 self.code = code
 self.message = message

 def __str__(self):
 """
 Returns a readable string representation of this instance.
 """
 return "%s: %s - %s" % (self.__class__.__name__, self.code, self.message)

 _static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to Python DynamoDB Lock’s documentation!

 		
 Python DynamoDB Lock

 		
 Features

 		
 Consistency Notes

 		
 Credits

 		
 Installation

 		
 Stable release

 		
 From sources

 		
 Usage

 		
 Basic Usage

 		
 Context Management

 		
 Table Creation

 		
 Error-Handling

 		
 Lock Acquisition

 		
 Lock Release

 		
 Lock Heartbeat

 		
 Client Close

 		
 Process Termination

 		
 Throughput Provisioning

 		
 Differences from Java implementation

 		
 python_dynamodb_lock package

 		
 python_dynamodb_lock module

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 Deploying

 		
 Credits

 		
 Development Lead

 		
 Contributors/Maintainers

 		
 History

 		
 0.9.3 (2020-07-14)

 		
 0.9.2 (2020-07-13)

 		
 0.9.1 (2019-10-29)

 		
 0.9.0 (2018-10-28)

_static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

